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Abstract. A geometric interpretation of the Schwarzian of a harmonic mapping is
given in terms of geodesic curvature on the associated minimal surface, generalizing

a classical formula for analytic functions. A formula for curvature of image arcs
under harmonic mapping is applied to derive a known result on concavity of the
boundary. It is also used to characterize fully convex mappings, which are related to
fully starlike mappings through a harmonic analogue of Alexander’s theorem.

§0. Introduction.

A planar harmonic mapping is a complex-valued harmonic function

f(z) = u(z) + iv(z) , z = x+ iy ,

defined on some domain D ⊂ C. If D is simply connected, the mapping has a
canonical decomposition f = h+ g, where h and g are analytic in D and g(z0) = 0
for some specified point z0 ∈ D. The mapping f is locally univalent if and only if
its Jacobian |h′|2 − |g′|2 does not vanish. It is said to be orientation-preserving if
|h′(z)| > |g′(z)| in D, or equivalently if h′(z) ̸= 0 and the dilatation ω = g′/h′ has
the property |ω(z)| < 1 in D.

In two previous papers [3,4] we introduced a notion of Schwarzian derivative for
a locally univalent harmonic mapping and showed that it retains some of the clas-
sical properties of the Schwarzian of an analytic function. In these investigations
is was fruitful to identify the harmonic mapping with its local lift to a minimal
surface. One purpose of the present paper is to develop a geometric interpretation
of the Schwarzian in terms of change of geodesic curvature, thus directly generaliz-
ing a known property of Schwarzians for analytic functions. In fact, this property
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is known to hold with respect to a more general notion of Schwarzian for map-
pings between Riemannian manifolds, according to work of Osgood and Stowe [9].
However, we have considered it worthwhile to derive the result independently for
harmonic mappings, appealing only to basic concepts of differential geometry in
R3.

According to the Weierstrass–Enneper formulas, an orientation-preserving har-
monic mapping f = h+g with dilatation ω = q2, the square of an analytic function
q, lifts locally to a minimal surface expressed by conformal parameters. The Carte-
sian coordinates ⟨u, v, w⟩ of the surface are given by

u(z) = Re{f(z)} , v(z) = Im{f(z)} , w(z) = 2 Im

{∫ z

z0

h′(ζ)q(ζ) dζ

}
.

The first fundamental form of the surface is ds2 = λ2|dz|2, where the conformal
metric λ = eσ has the form λ = |h′| + |g′|. Further information about harmonic
mappings and their relation to minimal surfaces can be found in the book [5].

We begin this paper with a formula for the geodesic curvature of a curve on the
minimal surface that is lifted from a curve in the range of the harmonic mapping
f . The derivative of geodesic curvature with respect to arclength is then expressed
in terms of the Schwarzian derivative of f .

The remainder of the paper concerns univalent harmonic mappings in the unit
disk, normalized so that f(0) = 0. A formula is found for the curvature of the local
image of a circle |z| = r. When f has a smooth extension to an arc of the unit
circle where its dilatation has unit modulus, the formula shows that the image arc
is concave. This is a known result [8,6,1], but the natural proof based on curvature
appears to be new.

When the dilatation is a finite Blaschke product, the curvature formula leads to
a kind of Gauss–Bonnet formula that relates total curvature of the boundary with
angles at corners. This is then applied to interpret certain geometric features of
harmonic shears of analytic functions convex in one direction, when the dilatation
imposed is a finite Blaschke product.

The curvature formula also allows us to give a simple criterion for a harmonic
mapping to be fully convex; that is, to map each circle |z| = r < 1 onto a convex
curve. It is well known that the hereditary property of convex analytic mappings
does not generalize to harmonic mappings. More precisely, a harmonic mapping
may send the disk univalently onto a convex domain, yet the image of the disk
|z| = r may fail to be convex when

√
2 − 1 < r < 1. The lower bound

√
2 − 1 is

sharp, as Ruscheweyh and Salinas [10] proved. A criterion is also developed for a
harmonic mapping to be fully starlike, and the two criteria are applied to give a
harmonic version of Alexander’s theorem that an analytic function f is convex if
and only if zf ′(z) is starlike. However, a harmonic mapping may be fully starlike
and yet fail to be univalent.

§1. Geodesic curvature on the minimal surface.
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Suppose that
f(z) = h(z) + g(z) = u(z) + iv(z)

is a locally univalent orientation-preserving harmonic mapping with dilatation g′/h′ =
q2, so that it lifts locally to a minimal surface Ω of height w = 2 Im{Φ(z)}, where

Φ(z) =

∫ z

z0

h′(ζ)q(ζ) dζ .

Let z = z(t) define a curve C in the plane, parametrized by its arclength t, so that
z′(t) = eiθ(t) is the unit tangent vector and κ(t) = θ′(t) is the curvature of C. Note
that z′′ = iκz′. With slight abuse of notation, let

⟨u, v, w⟩ = φ(t) = ⟨h(z(t)) + g(z(t)), 2 Im{Φ(z(t))}⟩

denote the lift of C to a curve Γ on Ω. Then a tangent vector to Γ is

φ′(t) = ⟨h′(z(t))z′(t) + g′(z(t))z′(t), 2 Im{h′((z(t))q(z(t))z′(t)}⟩ , (1)

and the element of arclength of Γ is ds = eσdt, where eσ = |h′|+ |g′|. To define a
canonical normal vector to φ′ in the tangent plane of Ω, we can replace z′ by iz′ in
the formula for φ′, since we are using conformal coordinates. Thus we obtain the
normal vector

n = ⟨ih′z′ − i g′z′, 2Re{h′qz′}⟩ , (2)

and the unit normal vector is N = e−σn. Similarly, the unit tangent vector to the
curve Γ is T = e−σφ′, and the curvature vector is dT/ds. The projection of the
curvature vector onto the tangent plane of Ω is the same as its projection onto N,
since T ··· dT/ds = 0. Thus the geodesic curvature of Γ with respect to Ω has the
expression

κ̂ =
dT

ds
···N = e−σ dT

dt
···
(
e−σn

)
= e−2σ d

dt

(
e−σφ′(t)

)
··· n = e−3σφ′′(t) ··· n ,

(3)

since φ′(t) ··· n = 0.
We will show that the geodesic curvature κ̂ is expressed by the formula

eσκ̂ = κ− ∂σ

∂(iz′)
, (4)

where ∂/∂(iz′) indicates a derivative in the direction of the vector iz′ normal to
the curve C. Since iz′ is a unit vector and

2
∂σ

∂z
=

∂σ

∂x
+ i

∂σ

∂y
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is the complex form of the gradient of σ, the relation (4) can be recast as

eσκ̂ = κ− 2Re

{
iz′

∂σ

∂z

}
= κ+ 2 Im

{
∂σ

∂z
z′
}

. (5)

For further reduction of the formula, we need to calculate ∂σ/∂z. Since σ =
log(|h′|+ |g′|), we find that

∂σ

∂z
= e−σ

(
∂|h′|
∂z

+
∂|g′|
∂z

)
= 1

2 e
−σ

(
h′′

h′ |h
′|+ g′′

g′
|g′|

)
, (6)

so that (5) becomes

eσκ̂ = κ+ e−σ Im

{(
h′′

h′ |h
′|+ g′′

g′
|g′|

)
z′
}

. (7)

But g′ = q2h′ and therefore
g′′

g′
=

h′′

h′ + 2
q′

q
, (8)

so an equivalent form is

eσκ̂ = κ+ Im

{
h′′

h′ z
′
}
+

2

1 + |q|2
Im{qq′z′} , (9)

because

e−σ|h′| = 1

1 + |q|2
.

This formula (9) for geodesic curvature, which is equivalent to (4), can be verified
by straightforward calculation. The details are deferred to the end of the paper.
Meanwhile, we propose to use the expression (9) to give a geometric interpretation
of the Schwarzian derivative of f in terms of change of curvature.

§2. Geometric interpretation of the Schwarzian.

In a previous paper [3] we introduced a notion of Schwarzian derivative for
harmonic mappings, generalizing the classical formula

S(f) =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

for locally univalent analytic functions. If f = h + g is an orientation-preserving
harmonic mapping with dilatation g′/h′ = q2 and conformal factor eσ = |h′|+ |g′|,
the Schwarzian of f is defined by

S(f) = 2
(
σzz − σ2

z

)
.

In terms of the analytic functions h and q, the formula becomes

S(f) = S(h) +
2 q

1 + |q|2

(
q′′ − q′h′′

h′

)
− 4

(
q′q

1 + |q|2

)2

. (10)

Our aim is now to establish the following theorem.
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Theorem 1. Let f(z) be an orientation-preserving harmonic mapping whose di-
latation is the square of an analytic function, so that f lifts locally to a minimal
surface defined by conformal parameters. Let C be a smooth curve in the paramet-
ric plane described by an equation z = z(t), where t is arclength, and let κ be the
curvature of C. Let Γ be the lift of C to the minimal surface, let s be the arclength
of Γ, and let κ̂ be its geodesic curvature. Then∣∣∣∣dfdt

∣∣∣∣2 dκ̂

ds
=

dκ

dt
+ Im

{
S(f)

(
dz

dt

)2
}

, (11)

where S(f) is the Schwarzian of f .

The relation (11), which interprets the Schwarzian geometrically in terms of
curvature, is a direct generalization of a classical formula for analytic functions,
whose associated minimal surface is a plane.

Proof. The point of departure is the formula (9) relating the curvatures of Γ and
C. Here the canonical decomposition is f = h+ g and the dilatation is g′/h′ = q2.
Recall that ds/dt = eσ = |h′|+ |g′|.

Differentiating the left-hand side of (9), we find

d

dt

(
eσκ̂

)
= 2eσRe

{
∂σ

∂z

dz

dt

}
κ̂+ e2σ

dκ̂

ds
,

since the chain rule takes the form

dσ

dt
= 2Re

{
∂σ

∂z

dz

dt

}
.

In view of (6) and (8), it follows that

d

dt

(
eσκ̂

)
= Re

{(
eσ

h′′

h′ + 2qq′|h′|
)
z′
}
κ̂+ e2σ

dκ̂

ds
. (12)

Introducing the formula (9) for κ̂ into the right-hand side of (12), we find after
some manipulation

d

dt

(
eσκ̂

)
= κRe

{
h′′

h′ z
′
}
+ 1

2 Im

{(
h′′

h′ z
′
)2

}

+
2

1 + |q|2
Im

{
h′′

h′ qq
′(z′)2

}
+

2κ

1 + |q|2
Re{qq′z′}

+
2

(1 + |q|2)2
Im

{
(qq′z′)2

}
+ e2σ

dκ̂

ds
.

(13)
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Next differentiate the right-hand side of (9) and use the relations z′′ = iκz′ and
|z′| = 1 to obtain

d

dt

(
eσκ̂

)
=

dκ

dt
+ Im

{(
h′′

h′

)′

(z′)2 +
h′′

h′ iκz
′

}

+
2

1 + |q|2
Im

{
qq′′(z′)2 + iκqq′z′

}
− 2

(1 + |q|2)2
Im

{
(qq′z′)2

}
.

(14)

Now compare the two expressions (13) and (14) to arrive at the formula

e2σ
dκ̂

ds
=

dκ

dt
+ Im

{
S(h)(z′)2

}
+

2

1 + |q|2
Im

{
q

(
q′′ − q′

h′′

h′

)
(z′)2

}
− 4

(1 + |q|2)3
Im

{
(qq′z′)2

}
,

where S(h) is the Schwarzian derivative of h. Referring to the expression (10) for
the Schwarzian of f , we see that the last equation reduces to

e2σ
dκ̂

ds
=

dκ

dt
+ Im

{
S(f)(z′)2

}
,

which is equivalent to (11) since∣∣∣∣dfdt
∣∣∣∣2 =

∣∣∣∣dfds dsdt
∣∣∣∣2 =

(
ds

dt

)2

= e2σ . �

§3. Curvature of image curves in the plane.

Let f = h + g be a locally univalent orientation-preserving harmonic mapping
in the unit disk D. We wish to calculate the curvature of the image of a circle
|z| = r < 1 at a given point f(reiθ). First note that the tangent vector is

∂f

∂θ
= ireiθh′(reiθ)− ire−iθ g′(reiθ) .

Thus with the notation

φ = arg
∂f

∂θ
= Im

{
log

∂f

∂θ

}
,

the curvature is

κ =
dφ

ds
=

dφ

dθ

/
ds

dθ
,
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so that∣∣∣∣∂f∂θ
∣∣∣∣κ = Im

{
∂

∂θ
log

∂f

∂θ

}
= Re

{
eiθh′(reiθ) + re2iθh′′(reiθ) + e−iθ g′(reiθ) + re−2iθ g′′(reiθ)

eiθh′(reiθ)− e−iθ g′(reiθ)

}
.

Further calculation leads to the formula

1

r2

∣∣∣∣∂f∂θ
∣∣∣∣3κ = Re

{
|h′|2 + reiθ h′h′′ + re−3iθ h′ g′′ − re3iθh′′g′ − |g′|2 − re−iθg′ g′′

}
= |h′(z)|2 Re

{
1 +

zh′′(z)

h′(z)

}
− |g′(z)|2 Re

{
1 +

zg′′(z)

g′(z)

}
+Re

{
z3

|z|2
(
h′(z)g′′(z)− h′′(z)g′(z)

)}
,

(15)
where z = reiθ and we understand that

|g′(z)|2
(
1 +

zg′′(z)

g′(z)

)
= |g′(z)|2 + zg′(z)g′′(z)

vanishes wherever g′(z) = 0. Introducing the dilatation ω = g′/h′, we find that

h′g′′ − h′′g′ = (h′)2ω′

and

1 +
zg′′(z)

g′(z)
= 1 +

zh′′(z)

h′(z)
+

zω′(z)

ω(z)
.

Consequently, we can write∣∣∣∣∂f∂θ
∣∣∣∣3κ = |zh′(z)|2

(
1− |ω(z)|2

)
Re

{
1 +

zh′′(z)

h′(z)

}
+Re

{
z3ω′(z)h′(z)2

}
− |zω(z)h′(z)|2 Re

{
zω′(z)

ω(z)

}
.

(16)

Suppose now that f has a smooth extension to some arc I of the unit circle, and
that |ω(eiθ)| ≡ 1 there. Since ωω = 1, we have

0 =
d

dθ

{
ω(eiθ)ω(eiθ)

}
= ieiθω′(eiθ)ω(eiθ)− ie−iθω(eiθ)ω′(eiθ) ,

so that eiθω′(eiθ)ω(eiθ) is real. Also, because f is orientation-preserving and so
|ω(z)| < 1 in D, it follows from Hopf’s lemma (see [5], p. 116) that

∂

∂r

{
|ω(reiθ)|2

}
> 0 for r = 1 ,

7



which shows that eiθω′(eiθ)ω(eiθ) > 0. Therefore,

eiθω′(eiθ)ω(eiθ) = |ω′(eiθ)| > 0 , (17)

and we deduce from (16) that∣∣∣∣∂f∂θ
∣∣∣∣3κ = Re

{
e3iθω′(eiθ)h′(eiθ)2

}
− |ω′(eiθ)||h′(eiθ)|2 .

In particular, κ ≤ 0 on the arc I where |ω(eiθ)| = 1. Equality occurs only where

e3iθω′(eiθ)h′(eiθ)2 = |ω′(eiθ)||h′(eiθ)|2 ,

or by (17)

e3iθω′(eiθ)h′(eiθ) = eiθω′(eiθ)ω(eiθ)h′(eiθ) ,

which reduces to the statement that

d

dθ

{
h(eiθ) + g(eiθ)

}
= 0 .

Therefore, if df/dθ ̸= 0 on an arc where |ω(eiθ)| = 1, then κ < 0. In other words,
the boundary is concave along the image arc. This phenomenon is implicit in work
of Hengartner and Schober [8]. An explicit proof, also based on Hopf’s lemma, was
given by Duren and Khavinson [6], and Bshouty and Hengartner [1] gave another
proof, but the above argument is more direct. The result can be summarized as
follows.

Theorem 2. Let f be a locally univalent harmonic mapping in the unit disk, and
suppose it has a C2 extension to some arc I of the unit circle, with dilatation of unit
modulus and df/dθ ̸= 0 on I. Then f maps I onto an arc of negative curvature.

In view of Theorem 2, it is clear that if f is a univalent harmonic mapping of the
disk with smooth extension to the boundary, and if its dilatation has unit modulus
on the whole unit circle, then f must have stationary points. In other words, it is
necessarily true that df/dθ = 0 at some points of the circle.

To give an illustration, let Φ be a conformal mapping of D onto a domain convex
in the horizontal direction, whose boundary is an analytic Jordan curve. Then Φ
has an analytic continuation to the closed disk with Φ′(eiθ) ̸= 0. Consider now the
harmonic shear f = h + g of Φ with dilatation ω = g′/h′ prescribed to be a finite
Blaschke product. Then f is a univalent harmonic mapping of D onto a domain
Ω convex in the horizontal direction, with h − g = Φ. (The shear construction
was introduced by Clunie and Sheil-Small [2]. See also [5], Section 3.4.) If ω is a
Blaschke product of order n, then |ω(eiθ)| ≡ 1 and ω(eiθ) = 1 at precisely n distinct
points. In view of the relation

Φ′ = h′ − g′ = (1− ω)h′ , (18)
8



we conclude that h is analytic in D and h′(eiθ) ̸= 0, except where ω(eiθ) = 1.
The relation (18) also shows that h has a logarithmic singularity at points where
ω(eiθ) = 1. Away from these n points, a calculation gives

df

dθ
= ieiθh′(eiθ)− ie−iθ g′(eiθ) =

ieiθΦ′(eiθ)

1− ω(eiθ)
− ie−iθ ω(eiθ) Φ′(eiθ)

1− ω(eiθ)

=
i

1− ω(eiθ)

{
eiθΦ′(eiθ) + e−iθΦ′(eiθ)

}
,

since |ω(eiθ)| = 1. This shows that df/dθ = 0 precisely at those points eiθ where
ieiθΦ′(eiθ) is real; i.e., where the tangent vector is horizontal, if ω(eiθ) ̸= 1 at those
points. Consequently, f extends smoothly to the open boundary arcs between
points where ω(eiθ) = 1, and df/dθ ̸= 0 except at points where the curve Φ(eiθ)
has a horizontal tangent vector. The behavior of df/dθ is indeterminate at points
at where both ω(eiθ) = 1 and the tangent vector is horizontal. The points of either
type divide the circle into a finite number of arcs, each of which f maps to a concave
boundary arc of Ω.

For a specific example, consider the harmonic shear fn of the identity map Φ(z) =
z with dilatation ω(z) = zn, where n is a positive integer. Then ω(eiθ) = 1 at the
nth roots of unity e2πik/n, for k = 1, 2, . . . , n; whereas the tangent vector of the
curve Φ(eiθ) is horizontal at eiθ = ±i. The points ±i are nth roots of unity when
n = 4, 8, 12, . . . . For all other integers n, the harmonic mapping fn sends each of
the n+2 arcs on the unit circle between successive roots of unity or points ±i onto
a concave boundary arc of its image. An explicit formula for fn is found to be

fn(z) = −z − 2

n
Re

{
n∑

k=1

αk log
(
1− α−kz

)}
, α = e2πi/n .

Figure 1, produced byMathematica, shows the images under fn of equally spaced
concentric circles and radial lines in the unit disk, for n = 1, 2, . . . , 8. Note that
the points e2πik/n are mapped to infinity, as predicted, whereas the points ±i are
mapped to finite cusps. Exceptions occur when n is a multiple of 4 and the two
sets of points overlap. Then the boundary function fn(e

iθ) has a horizontal jump
at θ = ±π/2. Greiner [7] studied the same example from a different viewpoint and
found the magnitude of the jump to be 2π/n. The phenomenon is also implicit in
a formula given by Hengartner and Schober [8] (cf. [5], Section 7.4).

A simpler example is given by the function

Fn(z) = z +
1

n+ 1
z n+1 , n = 1, 2, . . . ,

which maps the unit disk onto a domain bounded by a hypocycloid of n+2 cusps,
inscribed in the circle |w| = n+2

n+1 . Figure 2 shows the images of F1 and F2. Here

h(z) = z and ω(z) = zn, so that equation (16) reduces to the simple formula

κ = − n

2
√
2

(
1− cos(n+ 2)θ

)−1/2
,

9



since |df/dθ| = ds/dθ =
√
2(1 − cos(n + 2)θ

)1/2
. In general, the Gauss–Bonnet

formula says that ∫
∂Ω

κ ds+
n+2∑
k=1

βk = 2π ,

where βk are the changes in the argument of the tangent vector at the n+2 vertices.
For the particular example at hand,∫

∂Ω

κ ds = −n

2

∫ 2π

0

dθ = −nπ ,

and βk = π at each cusp.

§4. Convexity and starlikeness.

It is well known that convexity is a hereditary property for conformal mappings.
In other words, if f is analytic and univalent in D and maps it onto a convex
domain, then the image of every subdisk |z| < r < 1 is also convex. However, the
hereditary property does not generalize to harmonic mappings. If f is a univalent
harmonic mapping of D onto a convex domain, then the image of the disk |z| < r is

convex for each radius r ≤
√
2− 1 but not necessarily for any radius in the interval√

2− 1 < r < 1. The function

L(z) = Re{ℓ(z)}+ i Im{k(z)} = Re {z/(1− z)}+ i Im
{
z/(1− z)2

}
(19)

provides a harmonic mapping of the disk onto the half-plane Re{w} > − 1
2 , yet the

image of the disk |z| ≤ r fails to be convex for every r in the interval
√
2−1 < r < 1.

In the same sense, starlikeness is a hereditary property for conformal mappings.
Thus if f is analytic and univalent in D with f(0) = 0, and if f maps D onto a
domain that is starlike with respect to the origin, then the image of every subdisk
|z| < r < 1 is also starlike with respect to the origin. This means that every point
of the range can be connected to the origin by a radial line that lies entirely in the
region. Again, this hereditary property does not generalize to harmonic mappings.

A harmonic mapping of the unit disk will be called fully convex if it maps every
circle |z| = r < 1 in one-to-one manner onto a convex curve. Similarly, a harmonic
mapping f with f(0) = 0 is said to be fully starlike if it maps every circle |z| = r < 1
in one-to-one manner onto a curve that bounds a domain starlike with respect to
the origin. (In particular, f(z) ̸= 0 for 0 < |z| < 1.) According to the Radó-Kneser-
Choquet theorem (see e.g. [5], Section 3.1), a fully convex harmonic mapping is
necessarily univalent in D. However, we shall see that a fully starlike mapping need
not be univalent.

The following theorem gives an analytic description of the fully convex and fully
starlike mappings. It provides a harmonic generalization of the standard criteria

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0 and Re

{
zf ′(z)

f(z)

}
> 0

for an analytic function f to be convex and starlike, respectively.
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Theorem 3. Let f = h+ g be a locally univalent orientation-preserving harmonic
mapping of D. Then f is fully convex if and only if

|zh′(z)|2 Re
{
1 +

zh′′(z)

h′(z)

}
≥ |zg′(z)|2 Re

{
1 +

zg′′(z)

g′(z)

}
+Re

{
z3
[
h′′(z)g′(z)− h′(z)g′′(z)

]} (20)

for all z ∈ D. If f(0) = 0, then f is fully starlike if and only if f(z) ̸= 0 for
0 < |z| < 1 and

|h(z)|2 Re
{
zh′(z)

h(z)

}
≥ |g(z)|2 Re

{
zg′(z)

g(z)

}
+Re

{
z
[
h(z)g′(z)− h′(z)g(z)

]}
(21)

for all z ∈ D.

Proof. Suppose first that f is fully convex. Then f maps each circle |z| = r < 1 onto
a curve with curvature κ(reiθ) ≥ 0. According to the formula (15), this condition
reduces to (20). Conversely, if (20) holds, then f maps each circle |z| = r < 1 onto
a curve with κ(reiθ) ≥ 0. Since f is univalent in a neighborhood of the origin, the

total curvature
∫ 2π

0
κ(reiθ)dθ is equal to 2π for each r sufficiently small. But the

integral varies continuously with r and is an integer multiple of 2π, so the total
curvature is equal to 2π for every r. In other words, f maps each circle |z| = r < 1
in one-to-one manner onto a convex curve, and so f is fully convex.

Suppose next that f is fully starlike. Then ∂
∂θ arg{f(re

iθ)} ≥ 0 for 0 < r < 1.

This can be written as ∂
∂θ Im{log f(reiθ)} ≥ 0, or

Re

{
zh′(z)− zg′(z)

h(z) + g(z)

}
≥ 0 , z = reiθ .

Equivalently,

Re
{(

zh′(z)− zg′(z)
)(
h(z) + g(z)

)}
≥ 0 ,

which reduces to the relation (21). Conversely, if f(z) ̸= 0 for z ̸= 0 and (21) holds,
then arg{f(reiθ)} is nondecreasing along each circle |z| = r. The total change of
argument is a continuous function of r and is equal to 2π for small r by the local
univalence of f , so the image under f of each circle |z| = r < 1 is a curve of
nondecreasing argument that winds exactly once about the origin. This says that
each image curve bounds a starlike domain, so f is fully starlike. �

We now turn to the harmonic analogue of Alexander’s theorem. The following
theorem adapts an observation by Sheil-Small [11] to the context of fully convex
and fully starlike mappings.
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Theorem 4. Let h, g, H, and G be analytic functions in the unit disk, related by

zH ′(z) = h(z) , zG′(z) = −g(z) , z ∈ D .

Then f = h+ g is fully starlike if and only if F = H +G is fully convex.

Proof. If F is fully convex, it is locally univalent, so that |H ′(z)| ̸= |G′(z)| in D.
This implies that f(0) = 0 and f(0) ̸= 0 for z ̸= 0. Without loss of generality, we
may assume that F is orientation-preserving. If (20) holds for F = H +G, then a
simple calculation shows that (21) holds for f = h+ g. Thus f is fully starlike.

Conversely, if f is fully starlike, then F is locally univalent and may be taken
to be orientation-preserving. Then f satisfies (21) and so F satisfies (20), which
implies that F is fully convex. �

The harmonic half-plane mapping (19) has the form L(z) = H(z) +G(z) with

H(z) = 1
2

(
ℓ(z) + k(z)

)
=

z − 1
2z

2

(1− z)2
,

G(z) = 1
2

(
ℓ(z)− k(z)

)
=

−1
2z

2

(1− z)2
.

Further calculation shows that

h(z) = zH ′(z) =
z

(1− z)3
, g(z) = −zG′(z) =

z2

(1− z)3
,

so that

h′(z) =
1 + 2z

(1− z)4
, g′(z) =

2z + z4

(1− z)4
.

The mapping f = h+ g has a Jacobian

J(z) = |h′(z)|2 − |g′(z)|2 = |1− z|−8
(
|1 + 2z|2 − |z|2|1 + z|2

)
.

Straightforward analysis shows that J(z) > 0 for |z| < 2−
√
3 but J(−2+

√
3) = 0.

Thus f = h + g is not univalent in any disk |z| < r with r > 2 −
√
3. On the

other hand, the function L(z) is known to map each of the circles |z| = r ≤
√
2− 1

onto a convex curve, whereas the image is not convex for
√
2− 1 < r < 1. (See for

instance [5], Section 3.5.) Since 2−
√
3 <

√
2− 1, it follows that the dilation

F̃ (z) = F ((
√
2− 1)z) = H̃(z) + G̃(z)

is a fully convex mapping whose companion f̃(z) = h̃(z) + g̃(z) defined by

h̃(z) = zH̃ ′(z) , g̃(z) = −zG̃′(z)

is fully starlike but is not univalent in any disk |z| < r of radius larger than

2−
√
3√

2− 1
= 0.646 . . . .

In particular, this shows that a fully starlike mapping need not be univalent.
12



§5. Calculation of geodesic curvature.

Our final task is to verify the formula (9) for geodesic curvature that was used
in the proof of Theorem 1. It is convenient to consider the equivalent formula (7).
Introducing the expression (3) for κ̂ into (7), we see that it suffices to prove

φ′′(t) ··· n = e2σκ+ eσ Im

{(
h′′

h′ |h
′|+ g′′

g′
|g′|

)
z′
}

. (22)

Differentiation of (1) gives

φ′′(t) = ⟨h′′(z′)2 + h′z′′ + g′′(z′)2 + g′z′′, 2 Im
{
(h′q)′(z′)2 + h′qz′′

}
⟩ .

Hence, using the expression (2) for n and recalling that |z′| = 1, we find after
rearrangement of terms that φ′′(t) ··· n = A+B, where

A = Re
{
−iz′′

[
(|h′|2 + |g′|2)z′ − 2h′g′z′

]}
+ 4 Im {h′qz′′}Re {h′qz′}

and

B = Im
{(

h′′h′ + g′′g′
)
z′ −

(
h′′g′ + h′g′′

)
(z′)3

}
+ 4 Im

{
(h′q)′(z′)2

}
Re {h′qz′} .

Now introduce the relation z′′ = iκz′ to obtain after further reduction

A = κ
(
|h′|2 + |g′|2 − 2Re

{
h′g′(z′)2

}
+ 4Re {h′qz′}2

)
.

Observe now that (h′qz′)2 = h′g′(z′)2 and use the identity Re{α2} = Re{α}2 −
Im{α}2 to write

A = κ
(
|h′|2 + |g′|2 + 2Re {h′qz′}2 + 2 Im {h′qz′}2

)
= κ

(
|h′|2 + |g′|2 + 2 |h′qz′|2

)
= κ

(
|h′|2 + |g′|2

)2
= e2σκ .

Therefore, it remains to show that B is equal to the second term on the right-
hand side of (22). But (h′q)2 = h′g′, so

2(h′q)(h′q)′ = h′′g′ + h′g′′ , 2(h′q)(h′q)′ = |h′g′|
(
h′′

h′ +
g′′

g′

)
.

Hence we can write

4 Im
{
(h′q)′(z′)2

}
Re {h′qz′} = 2 Im

{
(h′q)′(z′)2

(
h′qz′ + h′qz′

)}
= Im

{
(h′′g′ + h′g′′)(z′)3 + |h′g′|

(
h′′

h′ +
g′′

g′

)
z′
}

,

which implies that

B = Im

{(
h′′h′ + g′′g′

)
z′ + |h′g′|

(
h′′

h′ +
g′′

g′

)
z′
}

. (23)

A simple calculation now shows that

B = eσ Im

{(
h′′

h′ |h
′|+ g′′

g′
|g′|

)
z′
}

,

since the last expression also reduces to the form (23). This proves (22) and con-
cludes the derivation of the formula (7) for geodesic curvature.
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